

Information-Theoretic Analysis of Brain and Physiological Networks: **Applications**

Luca Faes

Department of Engineering

University of Palermo, Italy

OUTLINE

INTRODUCTION

- Information Dynamics
- Network Physiology: different contexts

APPLICATIONS: PHYSIOLOGICAL NETWORKS

- Networks of cardiovascular interactions
- Networks of cardiorespiratory interactions
- Networks of cerebrovascular interactions

APPLICATIONS: BRAIN-BODY AND BRAIN-HEART INTERACTIONS

- Brain-heart and brain-brain interactions during sleep
- Brain-body interactions during mental stress
- Brain-heart interactions during emotion elicitation
- Brain-heart interactions in epilepsy

APPLICATIONS: SINGLE ORGAN NETWORKS

- Brain Networks from EEG recordings
- Muscle Networks probed during postural control

INFORMATION DYNAMICS IN NETWORKS OF DYNAMICAL SYSTEMS

Dynamical System $S=\{Y,X_1,X_2,...\}$

Introduction

Dynamic Process $S=\{Y,X_1,X_2,...\}$

• Information Decomposition

$$H(Y_n) = H(Y_n \mid X_n^-, Y_n^-) + I(Y_n; X_n^-, Y_n^-)$$

$$H_Y \qquad N_Y \qquad P_Y = I(Y_n; Y_n^-) + I(Y_n; X_n^- \mid Y_n^-)$$

$$Information \qquad Predictive \\ Information \qquad Storage \qquad Information \\ Storage \qquad T_{X \to Y}$$

Individual information Transfer information Transfer

Transfer

INFORMATION DYNAMICS IN NETWORKS OF DYNAMICAL SYSTEMS

Dynamical System $S=\{Y,X_1,X_2,...\}$

Dynamic Process $S=\{Y,X_1,X_2,...\}$

• Information Decomposition

Unique information Transfer Redundant Synergistic loint information Transfer

Transfer **Transfer**

Krohova, L Faes, B Czippelova, Z Turianikova, N Mazgutova, R Pernice, A Busacca, D Marinazzo, S Stramaglia, M Javorka, 'Multiscale information decomposition dissects control mechanisms of heart rate variability at rest and during physiological stress', Entropy, special issue "Information Dynamics in Brain and Physiological Networks", 2019, 21(3): 526.

NETWORK PHYSIOLOGY

NETWORK PHYSIOLOGY:

[Bashan A et al., Nature Comm 2012]

Organ systems exhibit a degree of activity and interactivity depending on the physiological state

• PHYSIOLOGICAL NETWORKS

Network of physiological interactions (cardiovascular, cardiorespiratory, cerebrovascular)

BRAIN-BODY AND BRAIN-HEART INTERACTIONS

Brain-body interactions:

- common patterns of neural activity in the central and peripheral nervous systems which reflect the coordination between brain and body
- These patterns can be probed by simultaneous measures of brain and organ activity

• Brain-heart interactions:

- relate cardiac physiology with central and peripheral nervous system activity
- Simultaneous brain-heart recordings may explain how cardiovascular arousal can influence physiological states or cognitive functions

Information flow in large-scale networks of brain-body interactions allows to establish the integration of **efferent commands** from brain to body and **afferent feedback** from body to brain

SINGLE-ORGAN NETWORKS

• **BRAIN NETWORKS:** functional networks probed studying EEG from multiple brain regions **Segregation and integration:** spatially distributed specialized brain areas are functionally connected

[G. Tononi et al, PNAS 1994]

• **MUSCLE NETWORKS:** functional networks probed studying EMG recorded from multiple muscles distributed across the body

APPLICATIONS: PHYSIOLOGICAL NETWORKS

- Networks of cardiovascular interactions
- Networks of cardiorespiratory interactions
- Networks of cerebrovascular interactions

Network of cardiovascular, cardiorespiratory and cerebrovascular short-term physiological interactions

Applications: Complexity of the CARDIAC CONTROL

Graded Head-up tilt protocol

17 young healthy subjects

- The dynamical complexity of short-term heart period variability decreases progressively with tilt-table angle
 - Linear estimator
 - Univariate analysis New Information N_V Information Storage S_V

Complexity assessed by linear model-based estimators significantly correlates with model-free estimates

A Porta, B De Maria, V Bari, A Marchi, L Faes, 'Are nonlinear model-free approaches for the assessment of the entropy-based complexity of the cardiac control superior to a linear model-based one?', IEEE Trans. Biomed. Eng., 2017; 64(6), 1287-1296.

Applications: CARDIOVASCULAR INTERACTIONS

Protocol:

- Subjects with postural-related syncope
- Healthy controls

Measured Time series:

- Binning estimator with NUE
- Bivariate analysis

Information Transfer
$$T_{X \to Y}$$
 $T_{Y \to X}$

Information transfer

Interaction delays

L Faes, G Nollo, A Porta: 'Mechanisms of causal interaction between short-term heart period and arterial pressure oscillations during orthostatic challenge', Journal of Applied Physiology 2013;114:1657-1667.

Applications: CARDIORESPIRATORY INTERACTIONS

Protocol: healthy subjects during attention and mental stress tasks

- Binning estimator with NUE
- Bivariate analysis

$$P_Y = S_Y + T_{X \to Y}$$

= $C_{X \to Y} + S_{Y|X}$

Predictive Information, Information Storage and Information Transfer are not informative about mental stress

Applications: CARDIOVASCULAR and CARDIORESPIRATORY INTERACTIONS

Protocol: 61 young healthy subjects during head-up tilt and mental stress tasks

- **Measured time series:** Heart period (H), systolic arterial pressure (S), respiration (R) 300 points in each condition
- Linear estimator
- **Network analysis** full information decomposition: $H_Y = N_Y + S_Y + T_{X \to Y} = N_Y + S_{Y|X} + I_{Y;X}^Y + T_{X_1 \to Y|X_2} + T_{X_2 \to Y|X_1} + I_{X_1:X_2|Y}^Y$

L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks', Entropy, special issue on Multivariate Entropy Measures and their applications, 2017, 19(1), 5

Applications: CARDIOVASCULAR AND CEREBROVASCULAR INTERACTIONS

Protocol: 10 subjects with postural-related syncope

Signals and time series

- Binning estimator with NUE
- Bivariate analysis, target HP or FV Entropy decomposition:

$$H_Y = S_Y + T_{X o Y} + N_Y$$
Information
Information Storage
Information Transfer

L Faes, A Porta, G Rossato, A Adami, D Tonon, A Corica, G Nollo: 'Investigating the mechanisms of cardiovascular and cerebrovascular regulation in orthostatic syncope through an information decomposition strategy', Autonomic Neuroscience 2013; 178:76-82.

APPLICATIONS: BRAIN-BODY AND BRAIN-HEART INTERACTIONS

- Brain-heart and brain-brain interactions during sleep
- Brain-body interactions during mental stress
- Brain-heart interactions during emotion elicitation
- Brain-heart interactions in epilepsy

(1) BRAIN-BRAIN AND BRAIN-HEART INTERACTIONS DURING SLEEP

Network of physiological interactions during sleep:

- Depth of sleep is related to ANS activity, and is reflected in EEG and HRV spectra
 - · LIGHT Sleep

↓ sympathetic activity

↑ parasympathetic activity

 $\uparrow P_{\delta} \uparrow P_{HF}$

DEEP Sleep

 $\downarrow \downarrow$ sympathetic activity

 $\uparrow \uparrow P_{\delta} \quad \uparrow \uparrow P_{HF}$

REM Sleep

↑ sympathetic activity

↓ parasympathetic activity

 $\downarrow P_{\rm HF}$ $\downarrow P_{\delta}$

Brain-heart and brain-brain interactions during sleep: PROTOCOL

- Protocol: full night polysomnography in 10 healthy subjects monitored during sleep
- Signals and measurement:

• Time series:

Network analysis

Linear estimator: • Conditional information transfer: $T_{X \to Y|Z}$ Statistical significance assessed by F-test • Internal information storage: $S_{Y|X,Z}$

Brain-heart and brain-brain interactions during sleep: RESULTS

Structured brain-heart and brain-brain network, with the EEG β wave acting as network hub The interaction network is sustained by the sleep stage transitions

Brain-heart and brain-brain interactions during sleep: RESULTS

MODEL-BASED ANALYSIS (linear estimator) MODEL-FREE ANALYSIS (kNN estimator) Information Transfer: 0.05 $T_{X \to Y|Z}$ Internal Information: 0.40 $S_{Y|X,Z}$ — brain-heart brain-brain internal dynamics

Common traits:

- **Brain** heart interactions: Bidirectional between HF_n and EEG β wave
- **Brain brain interactions:** Fully connected network with transfer mostly from β , σ towards δ , θ , α

number of subjects with statistically significant PTE or cSE (F-test): $\longrightarrow n=1-3$ $\longrightarrow n=4-6$ $\longrightarrow n=7-10$

Internal dynamics: Strong self-dependencies in all rhythms

Different traits:

• The δ EEG rhythm shows a significantly higher number of outgoing nonlinear links

Brain-heart and brain-brain interactions IN SLEEP APNEAS

- √ 8 sleep apnoea-hypopnoea patients SAHS
- √ same patients after continuous positive airway pressure therapy CPAP
- √ 14 healthy controls CTRL

Cardiac dynamics are more complex during sleep apneas, with no recovery after treatment

brain → heart causal interactions are impaired by sleep apneas, and partially restored by CPAP therapy

brain → heart Information Modification

Redundancy is a feature of undisturbed sleep, lost in SAHS and recovered by treatment

L Faes, D Marinazzo, S Stramaglia, F Jurysta, A Porta, G Nollo, 'Predictability decomposition detects the impairment of brain-heart dynamical networks during sleep disorders and their recovery with treatment', Phil. Trans. R. Soc. A 2016; 374:20150177.

(2) BRAIN-BODY INTERACTIONS DURING STRESS

- Goal: to quantify how central and peripheral nervous system functionally interact in resting states and during altered states
- Protocol: recording of multiple physiological signals through wearable multisensor devices
 - 18 healthy subjects
 - ✓ Experimental protocol:

368 + 311 =

mental arithmetic (7 min)

Devices:

Signals and measurement:

Time series:

time [s]

Brain-body interactions during stress: MEASURES

• NETWORK REPRESENTATION: $N = \{S_1, ..., S_7\} = \{X, Y\}$ $X = \{\eta, \rho, \pi\}$, $Y = \{\delta, \theta, \alpha, \beta\}$

NETWORK MEASURES:

Mutual information (static) measures

Brain-Body Mutual Information:

$$I_{XY} = I(X_n; Y_n)$$

Mutual Information between brain and single body node:

$$I_{X_iY|X^i} = I(X_{i,n}; Y_n | X_n^i)$$
 $i = 1,2,3$

Mutual Information between body and single brain node:

$$I_{Y_j X | Y^j} = I(Y_{j,n}; X_n | Y_n^j) \quad j = 1,2,3,4$$

Measures of Information Dynamics

Information Storage:

$$S_i = I(S_{i,n}; S_{i,n}^-)$$
 $i = 1,...,7$

Total Information Transfer:

$$T_j = I(S_{j,n}; S_n^{j-} | S_{j,n}^-)$$
 $j = 1,...,7$

Conditional Information Transfer:

$$T_{i \to j|k} = I(S_{j,n}; S_{i,n}^- | S_n^{i-}) \quad i, j = 1,...,7$$

Brain-body interactions during stress: RESULTS

Static analysis> Mutual Information

Conditional MI brain-single body node **REST GAME**

- brain and body communicate mainly through the heart rhythm and the beta wave activity
- The brain-heart communication is weakened sustained attention evoked serious game playing

R Pernice, Mzanetti, G Nollo, M De Cecco, A Busacca, L Faes, 'Mutual information analysis of brain-body interactions during different levels of mental stress', **Proc. of the 41th Conf. IEEE-EMBS**, 2019; in press.

Brain-body interactions during stress: RESULTS

Dynamic analysis: Information storage and total information transfer

each node of the brainbody network stores and receives a statistically significant amount information

Information storage and transfer are significantly higher for the heart, respiratory and cardiac nodes than for the four brain nodes

Τj

Brain-body interactions during stress: RESULTS

Dynamical analysis: Conditional information transfer

- the body subnetwork is highly connected through cardiovascular and cardiorespiratory interactions
- the number of connections between brain and body increases during mental stress and decreases during sustained

· Rationale: ANS and CNS are connected anatomically and functionally, and such interaction plays a role during emotional experiences

ANS - CNS interaction can be probed from simultaneous **EEG-ECG** recordings during affective elicitation

Circumplex Model of Affects:

[Posner,J et al, Dev. Psychopathol. 17, 2005]

- AROUSAL: how strongly the stimulus is felt
- VALENCE: how much the stimulus is perceived as positive or negative

Brain-heart interactions during emotion elicitation: METHODS

- Protocol: evoking emotions with different degrees of valence and arousal
 - √ 22 healthy subjects (21-24 years old)
 - ✓ Experimental protocol:

P. Lang, M. Bradley, and B. Cuthbert, "International affective picture system 2005.

✓ Signals and time series:

• ECG \rightarrow mean heart rate (μ), high-frequency component of HRV (HF)

[Barbieri et al. American Journal of Physiology 2005]

- EEG \rightarrow spectral power in θ , α , β , γ bands [P. Welch, IEEE Trans Audio Electroacoustics 1967]
- ✓ Experimental conditions:
 - Rest (R)
 - Neutral Elicitation (N)
 - Arousal with positive valence (ARP)
 - Arousal with negative valence (ARN)
- \checkmark NETWORK REPRESENTATION: $N = \{S_1,...S_6\} = \{X,Y\}$

$$X = \begin{cases} \eta_{\mu} & \textit{sympathetic} + \textit{parasympathetic} \\ \eta_{\textit{HF}} & \textit{parasympathetic} \end{cases}$$

$$Y = \{\theta, \alpha, \beta, \gamma\}$$

Linear estimation of the Information Transfer:

$$T_{Y \to \eta} = I(\eta_n; Y_n^- | \eta_n^-) , \eta \in {\{\eta_\mu, \eta_{HF}\}}$$

$$T_{\eta \rightarrow Y_i} = I(Y_{i,n}; \eta_n^- \mid Y_{i,n}^-) \ , \ Y_i \in \{\theta,\alpha,\beta,\gamma\}$$

Brain-heart interactions during emotion elicitation: RESULTS

Efferent information transfer: BRAIN → HEART

Transfer brain \rightarrow heart μ (sympathetic+parasympathetic)

- The brain-heart information transfer increases significantly during emotion elicitation
- Valence-dependent lateralization: higher left brain → heart transfer during positive elicitation higher right brain→heart transfer during negative elicitation

Brain-heart interactions during emotion elicitation: RESULTS

Afferent information transfer: HEART → BRAIN

Transfer heart $\mu \rightarrow brain \beta$ (sympathetic+parasympathetic)

· Increased information transfer from heart to left frontal and somatosensory regions during positive elicitation

Valence-dependent lateralization: higher left heart-brain transfer during positive elicitation higher right heart→brain transfer during negative elicitation

BRAIN-HEART INTERACTIONS IN TEMPORAL LOBE EPILEPSY

- Epileptic seizures influence both the cortical activity and the activity of the autonomic nervous system
- The separate study of the brain rhythms and of the cardiac dynamics underlying epilepsy has been performed for clinical purposes

[O.M. Doyle et al., Med. Eng. Phys. 32, 2010] [B. Moseley et al., Epilepsy Behav. 26, 2013] [C. Varon et al., Physiol. Meas. 36, 2015]

 Recent works studied the correlation between the epileptic neural network and the autonomic nervous system

[D. Piper et al., New J. Phys. 16, 2014] [K. Schiecke et al., IEEE Trans. Biomed Eng. 63, 2016]

• AIM: investigating the potential of information dynamics to reveal brain-heart interactions before, during and after epileptic discharges in children with temporal lobe epilepsy

200

200

200

HRV

300 400

EEG (ipsilateral)

300

300

time [s] $\delta_{\rm c}, \alpha_{\rm c}$ 500

100

100

IMF4: δ IMF2: a

100

100

200

200

200

time [s]

400

ENV(δ)

300

ENV(a)

Brain-heart interactions in epilepsy: METHODS

EEG (contralateral)

200

200

[h V]

PROTOCOL:

- ✓ 22 children with temporal lobe epilepsy
- ✓ **Pre-ictal** (5 min)
- ✓ Ictal (~ 1.5 min)
- ✓ Post-ictal 4.5 min)
- \checkmark ECG \rightarrow HRV
- ✓ EEG: Selection of ipsilateral and contralateral temporal lobe electrodes
 - Extraction of δ and α EEG envelopes

NETWORK REPRESENTATION:

$$N = \{S_1, ..., S_5\} = \{X, Y\}$$

$$X = \eta \quad , \quad Y = \{\delta_i, \delta_c, \alpha_i, \alpha_c\}$$

- Information Transfer (linear estimates): $brain \rightarrow heart: T_{\delta \rightarrow \eta} = I(\eta_n; \delta_n^- \mid \eta_n^-), T_{\eta \rightarrow \delta} = I(\delta_n; \eta_n^- \mid \delta_n^-)$ heart \rightarrow brain: $T_{\alpha \rightarrow n} = I(\eta_n; \alpha_n^- | \eta_n^-)$, $T_{n \rightarrow \alpha} = I(\alpha_n; \eta_n^- | \alpha_n^-)$
- Partial information decomposition of brain→heart interactions:

$$T_{\delta_{i},\delta_{c}\to\eta} = U_{\delta_{i}\to\eta} + U_{\delta_{c}\to\eta} + R^{\eta}_{\delta_{i};\delta_{c}} + S^{\eta}_{\delta_{i};\delta_{c}}$$

$$T_{\alpha_{i},\alpha_{c} \to \eta} = U_{\alpha_{i} \to \eta} + U_{\alpha_{c} \to \eta} + R_{\alpha_{i};\alpha_{c}}^{\eta} + S_{\alpha_{i};\alpha_{c} 30}^{\eta}$$

Brain-heart interactions in epilepsy: RESULTS

Brain-Heart Information Transfer

- The information transfer is markedly higher along the brain→heart direction
- No evident differences are observed between δ and α waves, pre-ictal and post-ictal phases, or contralateral and ipsilateral sites

Brain-heart interactions in epilepsy: RESULTS

Partial information decomposition of brain→heart information transfer

- The unique information transfer $\delta \to \eta$ is mostly ipsilateral in the pre-ictal phase and contralateral during the seizure and in the post-ictal phase
- These findings document the importance of PID, which removes from the information transfer the redundancy between the EEG activity of the two hemispheres

APPLICATIONS: SINGLE ORGAN NETWORKS

- Brain Networks from EEG recordings
- Muscle Networks probed during postural control

Study of networks formed by multichannel acquisitions of the same biomedical signal

Brain Networks

Multichannel scalp EEG

Muscular Networks

Whole body multichannel EMG

INSTANTANEOUS

EFFECTS

TRANSFER

ENTROPY

Information Dynamics of Scalp EEG Networks

Classical measures **CONDITIONAL**

TRANSFER ENTROPY

Protocol: scalp EEG in 21 healthy subjects during eyes open and eyes closed

TRANSFER

ENTROPY

Nearest neighbor estimate of information transfer and conditional information transfer between all sensors

- Uniform Information transfer
- · Dense connectivity between adjacent sensors
- · Instantaneous dependencies between all sensors
- · Patterns unchanged between

- Abolishment of instantaneous
- · Emergence of patterns of causal

Local sinks of information flow:

- anterior during EO
- anterior + occipital during EC

Information Dynamics of Muscle Networks

- · Protocol: multichannel EMG in 14 healthy subjects
- Conditions: standing and pointing to a target during normal altered stability

Network Physiology and Information Dynamics

"The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network"

[A. Bashan et al., Nature Communications 2012]

A new field, **Network Physiology**, is needed to probe the interactions among diverse physiologic systems

SYSTEMS

SIGNALS

INFORMATION DYNAMICS

Information Storage
Information Transfer

